Phylogenetic analysis of bacteria in sea ice brine sampled from the Canada Basin, Arctic Ocean

LiHuirong(李会荣)¹, Yu Yong(俞勇)¹, Chen Bo(陈波)¹, Zeng Yinxin(曾胤新)¹ and Ren Dam ing(任大明)²

1 SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China

2 StateKey Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, Shanghai 200433, China

Received October 10 2006

Abstract Bacterial diversity in sea ice brine samples which collected from four stations located at the Canada Basin, Arctic Ocean was analyzed by PCR-DGGE. Twenty-three 16S iDNA sequences of bacteria obtained from DGGE bands were cloned and sequenced. Phylogenetic analysis clustered these sequences within Y-proteobacteria, Cytophaga Flexibacter Bacteroides (CFB) group, Firm icutes and Actinobacteria. The phylotype of P seudoalteran onas in the Y-proteobacteria was predom inant and members of the CFB group and Y-proteobacteria were highly abundant in studied sea ice brine samples.

Key words sea ice brine, Arctic bacteria, 16S iDNA, phylogenetic

1 Introduction

Majority of the Arctic O cean is covered by sea ice formost of the year, with the area varying between 7 and $14 \times 10^6 \text{ km}^2$ seasonally (Gradinger and Zhang 1997). Sea ice with temperature ranging from 0 to -35° C (Haas $et \, al \, 1997$) is an inportant and extreme habitats on Earth formarine life. Once sea ice formed from seawater, it is a sem isolid matrix being permeated with a labyrinth of brine-filled channels and pockets. Such a sem irenclosed or even completely enclosed ecosystem is a microhabitat characterized by highly changeable salinity, acidity, dissolved gas and light signatures (Eicken $et \, al \, 2000$, Thomas and Dieckmann 2002), and in which, very heavy, highly active and diverse sea-ice mirrobial communities (SMCO) develops annually (Homer $et \, al \, 1992$, Grossmann and Dieckmann 1994). Sea-ice microbial communities live mainly in brine channels and pockets in the ice matrix, which play a significant role in the marine food webs of the Arctic Ocean. It was believed that heterotrophic bacteria represent a major group within sea ice mirrobial communities (Sullivan and Palmisano 1984, Staley and Gosink 1999, Mock and Thomas 2005).

The phylogenetic diversity of sea-ice microbial communities has been studied mainly in the Antarctic (Bowm an *et al.* 1997; Brown and Bowm an 2001; Brinkmeyer *et al.* 2003). Just recently has the diversity of Artic sea-ice bacteria been investigated by Brown and Bow-

man (2001) and Brinkm eyer et al. (2003, 2004), combining both cultivation and cultivation-independent methods. It has been found that the Arctic and Antarctic sea ice bacteria fall into 4 major phylogenetic groups including α-proteobacteria, Υ-proteobacteria, Cytophaga Flexibacter Bacteroides (CFB) group and Gram-positive ones (Brown and Bowm an 2001; Junge et al. 2002, Brinkm eyer et al. 2003, Groudieva et al. 2004). In addition, the phylotypes of both regions were found to be highly similar each other. In this study, the phylogenetic diversity of bacteria in sea ice brine samples of four stations located at the Canada Basin, Arctic O cean was studied using PCR-DGGE.

2 M aterials and m ethods

2. 1 Sampling

Four Sea ice brine samples used in this study were collected from the Canada Basin of the Arctic Ocean during the Louis S St-Laurent JWACS/NOAA Canada Basin expedition from 19th to 28th August 2002 (Table 1). A fter the sea ice cores were taken by MARK at 4 stations, the brine samples were collected into sterile plastic bottles and kept at 4°C. When returning to the lab, the brine samples (1500~1900 ml) were filtered through a Whatman filter (0 22 ¼m pore size). The filterwas put in a sterilized 2 ml centrifuge tube and kept frozen at -80°C until DNA extraction

700 I I I I	. a.		1 •	1
Table 1	Sites and	ltment	brine sam p	es

Station	Designated sample	Latitude and longitude	Date	Volume (m.l)
1	8	72°52 588′N, 136°32 218′W	19th Aug 2002	1500
2	12	73°30 059′N, 136°59 012′W	21 st Aug 2002	1900
3	22	73°30 596′N, 136°59 980′W	22nd Aug 2002	1600
4	45	76°49 154′N, 148°18 438′W	28th Aug 2002	1900

2. 2 DNA extraction

For total DNA extraction, m icroorgan isms were washed off the filter by rinsing the filter with lytic buffer (50 mM TrisHCl pH 8 Q 20 mM EDTA, 50 mM sucrose). A fter centrifugation, the cells were re-suspended in 0.5 ml lytic buffer 15 mg of lysozyme was added in and mixed. The mixture was incubated at room temperature for 10m in. A fter adding SDS and proteinase K to final concentrations of 1% (v/v) and 100 \mu g/ml respectively, the mixture was incubated at 37°C for 30m in and then at 55°C for 10m in. DNA was obtained from the lysates using standard phenol-chloroform extraction and ethanol precipitation procedure. The pellet was suspended in 20 \mu l sterilized M illQ water. RNA was removed by incubating the DNA solution with 5U DN ase-free RN ase at 37°C for 15 m in

2. 3 Amplification of 16S RNA genes

Nearly full-length 16S DNA was amplified from genomic DNA following the method described by Bosshard et al. (2000) with the primers 8f 5'-AGA GTT TGA TCC TGG CTC AG-3' and 1492r 5'-GGT TAC CTT GTT ACG ACT T-3'. Amplification was carried out in 50 \$\mu\$1 reaction volume containing 1 × buffer, 1.5 mM MgC \(\), 200 \$\mu\$moldNTP each kinds, 1U Taq DNA polymerase (Promega, Germany), 10 pmol primers (each direction), and 1 \mu I template DNA. PCR was carried out by denaturing at 95°C for 3 m in, followed by 25 cycles of denaturing at 95°C for 1m in, annealing at 50°C for 1m in and extending at 72°C for 2m in, and a final extension at 72°C for 10m in For DGGE analysis, a nest-PCR was carried out. The primers for amplifying eubacterial 16S iRNA genes were (5'-CGC CCG CCG CGC GCG GCG GCG GCG 341 f clamp GGG GCA CGG GGG G CC TAG GGG AGG CAG CAG-3') and 534r (5'-ATT ACC GCG GCT GCT GG-3') as described by Muyzer et al. (1993). 1 µl of the first PCR product was used as the template of the second amplification in a 50 µl reaction volume containing 200 µm of each of dNTP, 10 pm of each of primers, 1U of Tag DNA polymerase (Promega Germany), and 5 \mu \lof 10 \times PCR buffer (100 mM Tris \times HCl 15 mM MgCl, 500 mM KCl pH 8 3). The thermocycling program included an initial denaturation at 94°C for 4m in followed by 30 cycles of denaturation at 94°C for 30s, annealing at 58°C for 30s and extension at 72°C for 1m in, and a final extension at 72°C for 7m in An aliquot of PCR products was electrophorezed in 0.8% agarose gel Gelwas stained with ethicitum bromide and recoded using an ultraviolet analysis system.

2. 4 DGGE analysis

DGGE analysis was carried out with the D-CODE universal mutation detection system (Bio-Rad, USA). Approximately, 700 ng of PCR product was loaded each lane PCR products were separated in 0.75mm 8% polyacrylamide denaturant gradient gel (acrylamide; bisacrylamide, 37.5; 1) in 1 × TAE buffer at 200V and 60°C for 4hrs Denaturant gradient ranged from 30% to 60% linearly (100% denaturant was defined as 7M urea and 40% formamide). The gels were stained for 30m in with ethicium bromide and visualized under UV irradiance. The number of operational taxonomic unit (OTU) for each sample was defined as number of DGGE band found in that sample

2. 5 16S DNA sequencing

A total of 23 bands (Fig. 1) were excised from the DGGE patterns. Excised band was suspended in 20 \$\mu\$l of sterilized M illQ water, and kept at \$-20^\circ\$C overnight. The supernatant was collected after centrifugation at 12,000 g for 1m in at room temperature. 1 \$\mu\$l of such supernatant was used for re-amplification with primers 341 fw ith GC clamp and 534 r. The PCR product was ligated into pMD-18 T V ector (TAKARA, JAPAN) following manufacturer's instruction, and transformed into \$E\$. \$coli\text{ DH 50}\$. The plasmid containing inserts were sequenced with M 13 forward primer using an ABIPR ISM automatic sequencer (model

377).

2. 6 Phylogenetic analysis

The sequences most similar to the obtained ones were found through BLAST search (http://www.ncbi.nlm.nih.gov) against GenBank Database and retrieved All 16S nDNA sequences were aligned using clustal multiple-alignment program (Clustal W). In such alignment, primer corresponding region were included Phylogenetic trees were inferred, and bootstrap analysis (1000 replicates) was performed with MEGA version 3.1 (Kum ar et al. 2004).

2. 7 Nucleotide sequence accession numbers

Nucleotide sequences have been deposited in the GenBank database under the accession numbers DQ 838467 to DQ 838489.

3 Results

3. 1 DGGE

The V3 region of 16S rRNA gene of bacteria retrieved from the sea ice brine samples collected from the Canada Basin were amplified and profiled using DGGE. As showed in Fig. 1, DGGE profiles of different samples were complex and distinguishable each other, and that each sample was composed of a set of bands (at least 10 distinguishable bands). Many of the DGGE bands were weak, implying they correspond to relatively low abundance of template (DeLong and Pace 2001). DGGE revealed also that some bands were shared by samples

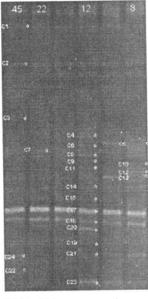


Fig 1 DGGE profiles of 16S nDNA V3 region of sea ice brine samples The bands marked with "o" were excised, cloned and sequenced

Table 2 Phylogenetic affiliations of 16S iDNA sequences in this study and their detection in sea ice brine sam-

ples (+ positive - negative)

Band Phylogenetic affiliation	M ost closely related sequence and the accession number	Sim ilarity y(%)	Source	Detection in brine samples				
				45	22	12	8	
C1	Y-proteobacteria	AY 167313 P seudom on as sp ANT92	99	Antarctic pack ice	+	+	+	+
C2	Y-proteobacteria	AM 111024 Stenotrophomonas sp. 7022	98	Deep sea sediment	+	+	+	+
C3	Y-proteobacteria	AY 771728 P seudoalteran onas nigrifaciens S3-28	99	Arctic bacteria	+	-	-	_
C4	CFB	DQ 186953 Polaribacter sp clone SB I04_ 133	98	A rctic O cean	+	+	+	+
C5	CFB	AY 167338 Bacteroides bacterium ARK 10264	99	Arctic pack ice	_	_	_	+
C6	CFB	AY 921684 clone AKYH 1027	87	Soil near to a silage storage	-	-	+	+
C7	CFB	DQ 129648 clone AK W 814	95	Urban aerosol	+	+	+	+
C8	Y-proteobacteria	AF468287 clone ARK A -103	95	Arctic pack ice	-	-	+	+
C9	Y-proteobacteria	AY 771728 P seudoalteran onas nigrifaciens S3-28	98	A retic bacteria	_	_	+	+
C10	Y-proteobacteria	AF539778 P seudoalteran onas sp RE2-11	99	Biofilms of the marine alga	_	-	-	+
C11	Y-proteobacteria	DQ 537521 P seudoalteran onas sp BS 20629	98	Arctic Sea ice	_	_	+	+
C12	Y-proteobacteria	DO 517877 P seudoalteran onas sn BS 20590	99	Arctic sea ice	-	-	-	+
C13	Firm icutes	DQ 239694 Enterococcus faecalis strain D3	99	/	-	-	-	+
C14	Y-proteobacteria	AF469307 clone 33-PA60B00	100	Subseafloor habitat	-	+	+	+
C15	Y-proteobacteria	AY 771728 P seudoalteran onas nigrifaciens S3-28	99	Arctic bacteria	+	+	+	+
C17	CFB	AY 238335 F lex ibacter sp MDA 2495	95	A patient's sputum	+	+	+	+
C18	Y-proteobacteria	DQ 517880 P seudoalteram on as sp BS 20673	100	Arctic sea ice	+	+	+	+
C19	Y-proteobacteria	AY 167267 M arinobacter sp ANT 8277	100	Antarctic pack ice	_	+	+	+
C20	CFB	AY 258121 bacterium DG 887	99	Associated with the shellfish	-	+	+	+
C21	CFB	AY 167338 Bacteroides bacterium ARK 10264	99	Arctic pack ice	-	+	+	+
C22	Y-proteobacteria	AY 167267 M arinobacter sp ANT 8277	98	Antarctic pack ice	+	_	_	_
C23	A ctinobacteria	DQ 449553 clone Ice-10K-112	99	Arctic fjord ice	-	+	+	+
C24	Y-proteobacteria	DQ 060402M arinobacter sp BS 20041	98	Arctic Sea Ice	+	-	-	

3. 2 Phylogenetic analysis

Twenty-three individual bands were sequenced from the DGGE gels (Fig. 1). The lengths of the resolved partial 16S rDNA sequences varied from 174 to 194 nucleotides. After a BLAST search—the phylogenetic affiliations of the sequences obtained in this study with their similarities (87 to 100%) to their closely related known sequences were shown in Table 2. Eighteen sequences showed the highest similarities to GenBank sequences of bacteria originating from marine environment, especially the Antarctic and Arctic sea ice. All 16S rDNA sequences derived from samples were clustered into four phylogenetic groups including Y-proteobacteria CFB group. Firm icutes and Actinobacteria (Table 2). Fig. 2 showed the phylogenetic relationships of the sequences isolated in this study with those retrieved from database.

A total of 14 sequences were grouped into Y-proteobacteria Most of the sequences were closely related to species previously isolated from Antarctic and/or Arctic sea ice. These sequences were found to belong to 3 known genera including *P seudoalterom onas*, *M arimom onas* and *S tenotrophom onas* (Table 2 and Fig. 2). The sequences of the genera *P seudoalterom onas* were dominant, which include sequences C1, C3, C9, C10, C11, C12, C14, C15 and C18. The band/sequence C1, which was present in four brine samples (Fig. 1), had 99% similarity to *P seudom onas* sp. ANT92 isolated from Antarctic pack ice (Brinkm eyer *et al.* 2003). Sequences C3, C9, and C15 were closely related to *P seudoalter*-

am onas nigrifaciens S3-28 isolated from deep-sea sed in ent of the east Pacific O cean Sequences C11, C12 and C18 clustered with genera *P seudoalteram onas* were highly similar to sequences of bacterial strains isolated from A retic sea ice by us The sequence C10 was only present in sea ice brine 8, with 99% similarity to *P seudoalteram onas* sp RE2-11 isolated from the biofilms of marine alga Sequence C14 showing 100% similarity to uncultured bacterial clone from subseafloor habitat Axial Volcano Three sequences (C19, C22 and C24) were related to *M arinom onas* sp from Arctic and Antarctic sea ice with similarities ranging from 98% to 100%. Only one sequence (C2), which was detected in all lanes, was the closest relative of *S tenotrophom onas* sp 7022 isolated from the deep-sea sed in ent of east Pacific O cean In addition to the sequences mentioned above, band C8, which was clustered into Y-proteobacteria but could not be affiliated to known genera, showing 95% similarity to uncultured bacterial clone AK IW A-103 obtained from Arctic pack ice (Brinkmeyer *et al.* 2003).

Seven sequences (30%) were clustered into CFB group (Table 2 and Fig. 2). Four sequences (C4, C5, C20 and C21) were closely related to species previously isolated from A retic sea ice and other marine habitats. It was surprising that other sequences were closely related to those retrieved from soil urban aerosol and patient's sputum. These sequences were found to belong to 3 known genera including Polaribacter, Bacteroides and Flexibacter. Four sequences (C6, C7, C17 and C20) related to clones or bacteria from non-polar envir ronment clustered with Flexibacter, in plying that this genus was dominant in the CFB group Sequence C6 was 87% similar to an uncultured bacterium clone AKYH 1027 obtained from soil adjacent to a silage storage bunker. Band C7 was closely related to the clone AK W 814 of the urban aerosol of two cities in Texas with 95% similarity. While sequence C17 was the closest relative of F lexibacter sp MDA 2495 isolated from a patient's sputum; sequence C20 showed 99% similarity to bacterium DG 887 which associated with shellfish Sequences C5 and C21 were 99% similar to Bacteroides bacterium from Arctic pack ice Sequence C4 was 98% similar to uncultured Polaribacter sp. clone from Arctic O cean

Sequence C13, which is related to *Enterococcus faecalis* strain D3, was found to belong to Firm icutes. This sequence was only retrieved from and present in sea ice brine sample 8, and it was only one low G + C Gram-positive bacterial sequence detected in this study. Band C23 presented in three sea ice brine samples was closely related to the clone Ice-10K-112 from Arctic fiord ice, which was grouped to Actinobacteria (Gram-positive bacteria with a high GC content of DNA) with a 99% similarity.

3. 3 Detection of bands in sea ice brine samples

Bands C1, C2, C4, C7, C15, C17 and C18 were detected in all studied sea ice brine samples (Table 2), suggesting the members of *P seudom onas, S tenotraphom onas, P olaribacter, F lex ibacter* and *P seudoalterom onas* were presented in all sea ice brine sample. Sequences corresponding to bands C14, C19, C20, C21 and C23, which were clustered to *P seudoalterom onas, M arinobater, F lex ibacter, B acteroides* and A ctinobacteria respectively, were detected in all sea ice brine samples except 45. The results indicated that phylotypes

of P seudoalteran onas, S tenotraphan onas, P olaribacter, M arinobater, F lexibacter, B acteroides and A ctinobacteria w ere rich in studied sea ice brine

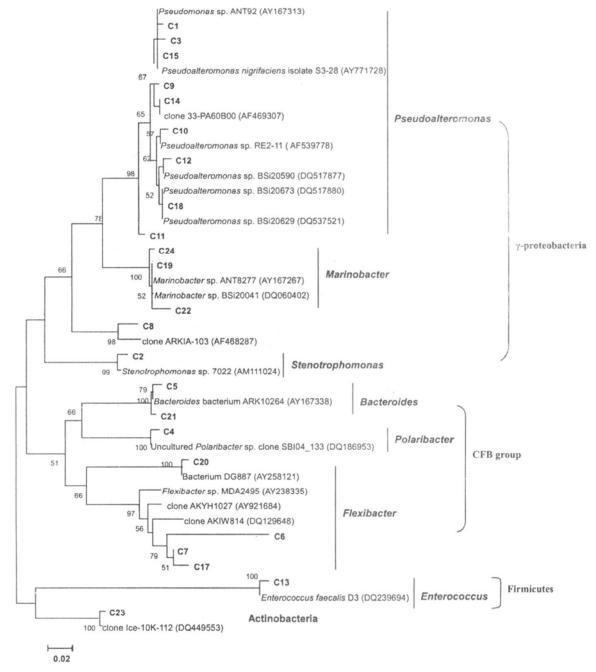


Fig 2 Phylogenetic relationships of bacterial 16S iDNA sequences from sea ice brine samples to closely related sequences retrieved from GenBank. The tree was constructed based on Kimura (two-parameter correction) distances using neighbor-joining method. Sequences from this study are in boldface type. The numbers in parentheses are accession numbers of sequences. Bootstrap values > 50% (1000 iterations) are shown. Scale bar indicates 0.02 nucleotide substitution per sequence position.

4 Discussion

Phylogenetic analysis of 16S nDNA sequences of bacteria from the sea ice brine samples collected from the Canada Basin revealed rich genetic diversity. These sequences are highly similar to those reported before with similarities ranging from 87% to 100%. In general, the most closely related sequences were retrieved from sea ice. All sequences derived

from sea ice brine samples fell into four phylogenetic groups including Y-proteobacteria, CFB group. Firm icutes and Actinobacteria. Similar to our previous results (Li et al. 2005), sequences fell into Y-proteobacteria were found to be predom inant and members of CFB group were highly abundant in this study. Beside the cultivation of sea ice bacteria, Brinkmeyer and his colleagues (2003) constructed also 16S rDNA libraries from Arctic and Antarctic pack ice samples. They found that Y-proteobacteria and CFB group were the dominant taxonom ic groups at both poles. A similar predom inance of phylotypes was also found in sea ice microbial communities analyzed by Brown and Bowman (2001).

M any sequences obtained in this study were the closest relatives of species originally is solated from A retic and Antarctic sea ice and some othermarine habitats. A coording to phylogenetic inferences, most of the phylotypes were known to be heterotrophic bacterial genera. From the results of our and previous studies (Bowman et al. 1997; Gosink et al. 1998; Brown and Bowman 2001; Junge et al. 2002. Brinkmever et al. 2003). it could be suggested that heterotrophic bacteria were the major prokaryotes in sea ice and most sea ice bacterial strains could be cold adaptive and halotolerant. The studies of Brown and Bowman (2001) and Brinkmeyer et al. (2003) showed that 16S iDNA sequences of the cultivated bacteria and uncultured clones from sea ice were overlapped strongly. These results indicated that only metabolically active and cultivatable species were able to significantly compete and successfully colonize sea ice during sea ice formation.

However, the diversity in sea ice based on cultivated phylotypes and 16S iDNA clone-libraries seemed to be reduced in Arctic microbial communities (Mock and Thomas 2005). In our study, the diversity in sea ice brine samples detected is less than that in Antarctic sea ice Brown and Bowman (2001) analysed 16S iDNA sequences data from sea ice, mainly in the Antarctic, and found that sea ice bacterial phylotypes fell into α- and Υ-proteobacteria, CFB group. Gram-positive bacteria and the orders of Chlamydiales and V errucom icrobiales. In contrast, only sequences of Υ-proteobacteria, CFB group and Gram-positive bacteria were presented in our study. Junge et al. (2002) had proposed that considering the years of sea ice habitat formed on Earth was geologically young relatively little time had been available for the evolution of highly diverse sea ice bacteria.

Beside sequences closely related to species previously isolated from Arctic sea ice and other marine habitats, some were the closest relatives of bacterial strains originating from soil, urban aerosol and patient's sputum. In contrast to the Southern Ocean, the Arctic Ocean was strongly influenced by high terrestrial input. The sea ice clone sequences related to β -proteobacteria, which was characteristic of freshwater habitats, have been reported in the study of Brinkmeyer *et al.* (2004). Moreover, our results may indicated that aerosol could be considered to be one source of sea ice bacterial communities

A cknow ledgen ents This work was supported by the Chinese National Basic Research Program (Grant No 2004CB719601) and National Science Fund of China (Grant No 40376001). We are grateful to NOAA Arctic Program Office for their providing this Cooperation Research Opportunity working on board R/V CCGS Louis S St-Laurent We thank Dr Ralf Gradinger, School of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, for his great help in sea ice sampling

References

- Bowm an JP, McCammon SA, Brown MV *et al.* (1997): Diversity and association of psychrophilic bacteria in Antarctic sea ice Appl Environ Micro, 63, 3068-3078
- Bosshard PP, SantiniY, Gr* ter D *et al* (2000): Bacterial diversity and community composition in the chemocline of the meromictic alpine lake Cadagno a reveal by 16S nDNA analysis FEMSM icrobiol Ecol, 31: 173⁻ 182
- Brinkmeyer R, Knittel K, J•rgens J et al. (2003): Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice Appl Environ Microb, 69, 6610-6619.
- Brinkmeyer R, G leckner FO, Helmke E *et al.* (2004): Predom in ance of β-proteobacteria in summer melt pools on A retic pack ice. Limnol O ceanogr, 49, 1013-1021.
- Brown MV, Bowm an JP (2001): A molecular phylogenetic survey of sea ice microbial communities (SMCO). FEMSM icrobiol Ecol., 35 267-275
- DeLong EE, Pace NR (2001): Environmental diversity of Bacteria and Archaea Syst Biol, 50 470-478
- Eicken H, Bock C, Wittig R et al. (2000): Magnetic resonance imaging of sea ice pore fluids methods and thermal evolution of pore microstructure. Cold Reg. Sci. echnol. 31: 207-225.
- Junge K, Inhoff F, Staley T *et al.* (2002): Phylogenetic diversity of numerically important Arctic sea ice bacteria cultured at subzero temperature M icrob Ecol, 43 315⁻ 328
- Kum ar S, Tam ura K, Nei M (2004): MEGA 3 Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment Briefings in Bioinformatics, 5 150-163
- Gosink JJ Woese CR, Staley JT (1998): Polaribacter gen, now, with three new species, *P. irgensii* sp. now, gas vacuo lated polarm arine bacteria of the Cytophaga-Flavobacterium-bacteroides group and reclassification of *Flectobacillus glomeratus* as *Polaribacter glomeratus* comb. Now. Int. J. Syst. Bacteriol, 48 223-235.
- Gradinger R, Zhang Q (1997): Vertical distribution of bacteria in Arctic sea ice from the Barent and Laptev Seas Polar Biol, 17: 448-454
- Grossmann S, Dieckmann GS (1994): Bacterial standing stock, activity, and carbon production during form ation and growth of sea ice in the Weddell Sea, Antarctica Appl Environ Microbiol, 60 2746-2753
- Groudieva T, Kambourova M, Yusef H et al. (2004): Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen Extremophiles, 8(6): 475-488
- Haas C, Gerland S, Eicken H *et al* (1997): Comparision fo sea ice thickness measurements under summer and winter conditions in the Arctic using a small electromagnetic induction device Geophysics, 62 749⁻757.
- Homer RA, Ack ley SF, Dieckmann GS *et al.* (1992): Ecology of sea ice biota 1. Habitat, term inology, and methodology. Polar Biol., 12 417-427.
- LiHR, YuY, Chen B et al. (2005): Molecular genetic diversity of bacteria in the bottom section of Arctic sea ice from the Canada Basin. A cta O ceanologica Sinica, 24(6): 153-161.
- Mock T, Thomas DN (2005): Recent advances in sea icem icrobiology. Environ Microbiol, 7(5): 605-619.
- Muyzer G, Waal de EC, Ultterlinden AG (1993): Profiling of complex microbial population by denaturing gradient gel electrophores is analysis of polymerse chain reaction-amplified genes coding for 16S iRNA. Appl Environ Microbiol, 59, 695-700
- Staley JF, Gosink JJ (1999): Poles apart biodiversity and biogeography of sea ice bacteria Annu Rev Mircrobiol, 53 189-215
- Sullivan CW, Palm isano AC (1984): Sea ice m icrobial communities distribution, abundance, and diversity of ice bacteria in M dM urdo Sound, Antarctica, in 1980, Appl Environ M icrobiol, 47: 788-795.
- Thom as DN, Dieckmann GS (2002): Antarctic sea ice a habitat for extremophiles Science, 295, 641-644